Optical coherence tomography with plasmon resonant nanorods of gold.

نویسندگان

  • Timothy S Troutman
  • Jennifer K Barton
  • Marek Romanowski
چکیده

We explored plasmon resonant nanorods of gold as a contrast agent for optical coherence tomography (OCT). Nanorod suspensions were generated through wet chemical synthesis and characterized with spectrophotometry, transmission electron microscopy, and OCT. Polyacrylamide-based phantoms were generated with appropriate scattering and anisotropy coefficients (30 cm(-1) and 0.89, respectively) to image distribution of the contrast agent in an environment similar to that of tissue. The observed signal was dependent on whether the plasmon resonance peak overlapped the source bandwidth of the OCT, confirming the resonant character of enhancement. Gold nanorods with plasmon resonance wavelengths overlapping the OCT source yielded a signal-to-background ratio of 4.5 dB, relative to the tissue phantom. Strategies for OCT imaging with nanorods are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography.

We demonstrate depth-resolved viscosity measurements within a single object using polarized optical scattering from ensembles of freely tumbling plasmon resonant gold nanorods (GNRs) monitored with polarization-sensitive optical coherence tomography. The rotational diffusion coefficient of the GNRs is shown to correlate with viscosity in molecular fluids according to the Stokes-Einstein relatio...

متن کامل

Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography.

Plasmon-resonant gold nanorods are demonstrated as low backscattering albedo contrast agents for optical coherence tomography (OCT). We define the backscattering albedo, a', as the ratio of the backscattering to extinction coefficient. Contrast agents which modify a' within the host tissue phantoms are detected with greater sensitivity by the differential OCT measurement of both a' and extincti...

متن کامل

Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography.

Plasmon-resonant gold nanorods (GNRs) can serve as imaging agents for spectroscopic optical coherence tomography (SOCT). The aspect ratio of the GNRs are adjusted for maximum absorption in the far red to create a partial spectral overlap with the low-wavelength edge of the near-infrared SOCT imaging band. The spectroscopic absorption profile of the GNRs is incorporated into a depth-resolved alg...

متن کامل

Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects.

Gold nanorods (NRs) have plasmon-resonant absorption and scattering in the near-infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two-photon luminescence due to plasmon-enhanced two-photon absorption. NRs have also been employed in biomedical imaging m...

متن کامل

Spectral Analysis for the Detection of Nanoparticles in Optical Coherence Tomography Scans

Optical coherence tomography (OCT) is an imaging modality that is able to visualize the light backscattered from a sample and create a micron resolution tomogram of its structure. This enables very high resolution images of biological structures, such as the retina and tumors. Functional imaging of the molecular processes inside tissue has not been realized with OCT yet. One way to image molecu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 32 11  شماره 

صفحات  -

تاریخ انتشار 2007